If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.31x^2-5x+17=0
a = 0.31; b = -5; c = +17;
Δ = b2-4ac
Δ = -52-4·0.31·17
Δ = 3.92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{3.92}}{2*0.31}=\frac{5-\sqrt{3.92}}{0.62} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{3.92}}{2*0.31}=\frac{5+\sqrt{3.92}}{0.62} $
| (x+8)(2x-6)=(39)(20) | | 120/77=10/11x | | -4(x/2)=x+7 | | (x+8)(2x-6)=39(20) | | 9/5m=8 | | 2y2-2y=4 | | 4(95-8x)=x+-115 | | 78+14m=344 | | 5x+3=3(2x/3) | | 8=4-5x | | -5(4x-2)=-2(3+6)-8x+16 | | 33n-169=260 | | 8(u+11)+(-2)=94 | | x+(44-x)=180 | | v2=26 | | (5u-6)(8+u)=0 | | -1/2x-5=-3 | | 2(x-2)+4x=28 | | 2.8x+2.4=10 | | 3v=35+4v | | H=3.9t^2+15.6t | | 48+5y=11y | | 4+3x-6=3x-6=3x+2-x | | -2(-1x+1)=-26 | | 20x-9=13x | | 3(-4+5x)=138 | | 4y2+25+20y+y2-12y-25+3y-11=0 | | 2(x-3)=4(x-14) | | -5=7y+2 | | 3(x-7)+7=3x=13 | | -6y=8(y+3)=8 | | -55=8-9w |